
Мыло
Мыло — жидкий или твёрдый продукт, содержащий поверхностно-активные вещества, в соединении с водой используемое либо как косметическое средство — для очищения и ухода за кожей (туалетное мыло); либо как средство бытовой химии — моющего средства (мыло хозяйственное).
История
По имеющимся данным, мыло изготовляли ещё в древних Шумере и Вавилоне (около 2800 г. до н. э.). Описание технологии изготовления мыла найдено в Месопотамии на глиняных табличках, относящихся примерно к 2200 г. до н. э. Египетский папирус середины второго тысячелетия до нашей эры свидетельствует, что египтяне регулярно употребляли мыло в омовениях. Широко применяли подобные моющие средства и в Древнем Риме.
Практика показывает, что масла биологического происхождения хорошо снимают загрязнения с поверхности кожи. Это легко заметить при употреблении жирной пищи руками, например жареного на костре мяса. Также примем во внимание тот факт, что в то время, как в южных широтах для мытья проще было использовать растительное масло, в северных это могло быть затруднительным ввиду дороговизны сырья. А топлёный животный жир получать в условиях севера ощутимо легче. Учитывая, что для топления зачастую использовали открытый огонь, смешение топлёного жира с золой или песком — вопрос времени. В дальнейшем необходимо лишь подобрать оптимальный состав жиров для получения однородной эргономичной и приятной смеси.
В 1808 году французский химик Мишель Эжен Шеврёль (1786−1889) по просьбе владельцев текстильной фабрики установил состав мыла. В результате анализа оказалось, что мыло — это натриевая соль высшей жирной (карбоновой) кислоты.
В Европе и США непрерывный процесс мыловарения был отработан в конце 1930-х годов вместе с непрерывным процессом гидролиза (расщепления) жиров водой и паром высокого давления в мыловаренных башнях.
Состав
В химическом отношении основным компонентом твёрдого мыла являются смесь растворимых солей высших жирных кислот. Обычно это натриевые, реже — калиевые и аммониевые соли таких кислот, как стеариновая, пальмитиновая, миристиновая, лауриновая и олеиновая.
Один из вариантов химического состава твёрдого мыла — C17H35COONa (жидкого — C17H35COOK).
Дополнительно в составе мыла могут быть и другие вещества, обладающие моющим действием, а также ароматизаторы и красители и порошки.
Технология изготовления
В качестве сырья для получения основного компонента мыла могут использоваться животные и растительные жиры, жирозаменители (синтетические жирные кислоты, канифоль, нафтеновые кислоты, талловое масло).
Получение мыла основано на реакции омыления — гидролиза сложных эфиров жирных кислот (то есть жиров) с щелочами, в результате которого образуются соли щелочных металлов и спирты.
В специальных ёмкостях (варочных котлах) нагретые жиры омыляют едкой щёлочью (обычно гидроксидом натрия). В результате реакции в варочных котлах образуется однородная вязкая жидкость, густеющая при охлаждении — мыльный клей, состоящий из мыла и глицерина. Содержание жирных кислот в мыле, полученном непосредственно из мыльного клея обычно 40−60 %. Такой продукт имеет название «клеевого мыла». Способ получения клеевого мыла принято называть «прямым методом».
«Косвенный метод» получения мыла заключается в дальнейшей обработке мыльного клея, который подвергают отсолке — обработке электролитами (растворами едкой щёлочи или хлористого натрия), в результате происходит расслоение жидкости: верхний слой, или мыльное ядро, содержит не менее 60 % жирных кислот; нижний слой — подмыльный щёлок, раствор электролита с большим содержанием глицерина (также содержит загрязняющие компоненты, содержавшиеся в исходном сырье). Полученное в результате косвенного метода мыло носит название «ядрового».
Высший сорт мыла — пилированное, получают при перетирании высушенного ядрового мыла на валиках пилирной машины. При этом в конечном продукте содержание жирных кислот повышается до 72−74 %, улучшается структура мыла, его устойчивость к усыханию, прогорканию и действию высоких температур при хранении.
При использовании в качестве щёлочи каустической соды получают твёрдое натриевое мыло. Мягкое или даже жидкое калиевое мыло образуется, когда применяется гидроксид калия.

Хлороформ
Хлороформ — органическое химическое соединение с формулой CHCl3. При нормальных условиях бесцветная летучая жидкость c эфирным запахом и сладким вкусом. Практически нерастворим в воде — образует с ней растворы с массовой долей до 0,23 %, — смешивается с большинством органических растворителей. Негорюч. Возможны отравления фосгеном при работе с хлороформом, который долго хранился в тёплом месте.
История
Хлороформ был впервые получен в 1831 году независимо в качестве растворителя каучука Самуэлем Гутри (Samuel Guthrie), затем Либихом (Justus von Liebig) и Суберейном (Eugène Soubeiran).
Формулу хлороформа установил французский химик Дюма (Dumas). Он же и придумал в 1834 г. название «хлороформ», благодаря свойству этого соединения образовывать муравьиную кислоту при гидролизе (лат. formica переводится как «муравей»).
В клинической практике в качестве общего анестетика хлороформ первым применил Холмс Кут (Holmes Coote) в 1847 г., в широкую практику он был внедрён акушером Джеймсом Симпсоном (James Simpson), который использовал хлороформ для уменьшения боли при родах.
В России метод производства медицинского хлороформа предложил учёный Борис Збарский в 1916 году, когда проживал на Урале в селе Всеволодо-Вильва в Пермском крае.
Применение
В конце XIX и начале XX веков хлороформ использовался как анестетик при проведении хирургических операций. Впервые как средство для наркоза хлороформ был применён при хирургических операциях английским врачом Симпсоном (1848 г.). В России хлороформ как средство для общего наркоза впервые применил Н. И. Пирогов. Однако в данной роли хлороформ впоследствии был заменён более безопасными веществами.
Хлороформ используется для производства хлордифторметана — фреона (хладона) 22 путём реакции обмена атомов хлора на фтор при обработке хлороформа безводным фтористым водородом в присутствии хлорида сурьмы(V) (по реакции Свартса):

Хлороформ также используется в качестве растворителя в фармакологической промышленности, а также для производства красителей и пестицидов. Хлороформ, содержащий дейтерий(CDCl3) — наиболее общий растворитель, используемый в ядерном магнитном резонансе (ЯМР).

Аэрогель
Аэрогель — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.
История
Первенство в изобретении признано за химиком Стивеном Кистлером (Steven Kistler) из Тихоокеанского колледжа (College of the Pacific) в Стоктоне, Калифорния, США, опубликовавшего в 1931 году в журнале Nature свои результаты.
Кистлер заменял жидкость в геле на метанол, а потом нагревал гель под давлением до достижения критической температуры метанола (240 °C). Метанол уходил из геля, не уменьшаясь в объёме; соответственно, и гель «высыхал», почти не ужимаясь.
Применение
Помимо многочисленных технических применений, обусловленных вышеперечисленными уникальными свойствами, аэрогель знаменит прежде всего использованием в проекте «Стардаст» в качестве материала для ловушек космической пыли.
Поскольку показатель преломления аэрогелей занимает промежуточное положение между показателями преломления газообразных и жидких (твёрдых) веществ, аэрогель используется как радиатор в черенковских детекторах заряженных частиц.
Аэрогели могут использоваться в качестве газовых и жидкостных фильтров.
Аэрогель на основе оксида железа с алюминиевыми наночастицами может служить взрывчаткой (разработка Ливерморской национальной лаборатории им. Лоуренса, США).
В начале 2006 некоторые компании, например, United Nuclear, заявили о начале продаж аэрогеля организациям и частным лицам. В зависимости от размера и формы образца, цена составляет от $25 (фрагменты) до $125 (кусочек, помещающийся на ладони).
В настоящее время на основе аэрогеля изготавливаются теплоизоляционные материалы для промышленного применения.

Порох
Порох — многокомпонентная твёрдая взрывчатая смесь, способная к закономерному горению параллельными слоями без доступа кислорода извне с выделением большого количества тепловой энергии и газообразных продуктов, используемых для метания снарядов, движения ракет и в других целях. Порох относят к классу метательных взрывчатых веществ.
История
Первым представителем взрывчатых веществ был дымный порох — механическая смесь калиевой селитры, угля и серы, обычно в соотношении 15:3:2. Существует устойчивое мнение, что подобные составы появились ещё в древности и применялись главным образом в качестве зажигательных и разрушительных средств. Однако материальных или надёжных документальных подтверждений этого не найдено. В природе месторождения селитры встречаются редко, а калиевая селитра, необходимая для изготовления достаточно стабильных составов, особенно редко, в Индии и Чили.
Существуют устойчивые многочисленные мнения, что порох был изобретён в Китае. К середине первого века нашей эры селитра была известна в Китае и есть убедительные доказательства использования селитры и серы в различных комбинациях в основном для приготовления лекарств. Китайский алхимический текст, датированный 492 годом, описывает практический и надёжный способ отличить калийную селитру от других неорганических солей, служащий алхимикам для оценки и сравнения методов очистки — при сжигании калийной селитры образуется фиолетовое пламя. Древние арабские и латинские способы очистки селитры опубликованы после 1 200 года. Первое упоминание о напоминающей порох смеси появилось в Taishang Shengzu Danjing Mijue по Qing Xuzi (около 808 года) — описывается процесс смешивания шести частей серы, шести частей селитры на одну часть кирказона (травы, которая обеспечивала смесь углеродом). Первым описанием зажигательных свойств таких смесей является Zhenyuan miaodao yaolüe — даосский текст предварительно датируемый серединой IX-го века нашей эры: «Некоторые нагревали вместе серу, реальгар и селитру с мёдом — в результате возникали дым и пламя, так что их руки и лица были сожжены, и даже весь дом, где они работали, сгорал». Китайское слово «порох» (от 火药/火药; пиньинь : Хо Яо / xuou yɑʊ /, что буквально означает «Огонь медицины») вошло в употребление через несколько веков после открытия смеси. Таким образом, в IX-м веке даосские монахи и алхимики в поисках эликсира бессмертия по случайности наткнулись на порох. Вскоре китайцы применили порох для развития оружия: в последующие века они производили различные виды порохового оружия, включая огнеметы, ракеты, бомбы, примитивные гранаты и мины, прежде чем было изобретено огнестрельное оружие, использующее энергию пороха собственно для метания снарядов.
Уцзин цзунъяо (кит. трад. 武經總要, упр. 武经总要, пиньинь: wǔ jīng zǒng yào, буквально: «собрание наиболее важных военных методов») — китайский военный трактат, созданный в 1044 году при династии Северная Сун, составленый известными учёными Цзэн Гунлян, Дин Ду и Ян Вэйдэ труд является первым в мире манускриптом, в котором приведены рецепты пороха, даёт описание различных смесей, в состав которых включены продукты нефтехимии, а также чеснок и мёд. Среди прочего упоминаются способы замедления горения пороха для создания фейерверков и ракет — если смесь не содержит достаточного для создания взрыва количества селитры (максимально количество селитры уменьшается на 50 %), то она просто горит. Вместе с тем, Собрание наиболее важных военных методов написано чиновником во времена династии Сун и нет достаточных свидетельств того, что он имел непосредственное отношение к военным действиям. Также нет никаких упоминаний применения (использования) пороха в летописях, описывающих войны Китая против тангутов в XI-м веке. Впервые опыт применения «Огненного копья» упоминается при описании осады De’an в 1132 году.
На сегодняшний день принят основной научный консенсус о том, что порох был изобретён в Китае и затем распространился по Ближнему Востоку, а позже попал в Европу. Возможно, это было сделано в IX веке, когда алхимики искали эликсир бессмертия. Его появление привело к изобретению фейерверков и ранних образцов огнестрельного оружия. Распространение пороха в Азии из Китая в значительной степени приписывается монголам. Гипотетически, порох попал в Европу через несколько веков. Однако существуют споры, о том насколько китайский опыт применения пороха в боевых действиях повлиял на поздние достижения на Ближнем Востоке и в странах Европы.
Изготовление калиевой селитры требует разработанных технологических приёмов, которые появились лишь с развитием химии в XV—XVI веках и получением Глаубером азотной кислоты в 1625 году. Изготовление углеродных материалов с высокоразвитой удельной поверхностью типа древесных углей также требует развитой технологии, появившейся лишь с развитием металлургии железа. Наиболее вероятным является использование различных природных селитросодержащих смесей с органикой, обладающих свойствами, присущими пиротехническим составам. Одним из изобретателей пороха принято считать монаха Бертольда Шварца.
Горение пороха и его регулирование
Горение параллельными слоями, не переходящее во взрыв, обусловливается передачей тепла от слоя к слою и достигается изготовлением достаточно монолитных пороховых элементов, лишённых трещин. Скорость горения порохов зависит от давления по степенному закону, увеличиваясь с ростом давления, поэтому не стоит ориентироваться на скорость сгорания пороха при атмосферном давлении, оценивая его характеристики. Регулирование скорости горения порохов очень сложная задача и решается использованием в составе порохов различных катализаторов горения. Горение параллельными слоями позволяет регулировать скорость газообразования. Газообразование пороха зависит от величины поверхности заряда и скорости его горения.
Величина поверхности пороховых элементов определяется их формой, геометрическими размерами и может в процессе горения увеличиваться или уменьшаться. Такое горение называется соответственно прогрессивным или дегрессивным. Для получения постоянной скорости газообразования или её изменения по определённому закону отдельные участки зарядов (например ракетных) покрывают слоем негорючих материалов (бронировкой). Скорость горения порохов зависит от их состава, начальной температуры и давления.

Лак
Лак — растворы смол (натуральных или синтетических) в различных растворителях (углеводороды, ацетон, вода, этанол, олифы или эфирные масла) до жидкой или полужидкой консистенции, которые, просыхая в тонком слое, находящемся на каком-либо предмете, образуют прочную пленку (как правило прозрачную, в отличие от краски), хорошо противостоящую различным внешним физико-химическим воздействиям. Отвердение пленки лака происходит либо за счет испарения растворителя, либо за счет реакции окислительной полимеризации.
История
Изобретение лака в Европе приписывают немецкому монаху Феофилу, жившему в XII веке; в первое время приготовление их было обставлено тайнами и велось келейным образом. Надо думать, что первые лаки европейского производства были спиртовыми, а первым лаковым заводом на континенте Европы следует считать завод французского химика Шене, построенный в 1803 г.
Производство масляных лаков долгое время представляло привилегию Англии, и только когда Америка, Португалия и Голландия стали снабжать европейские рынки такими же смолами и копалами, какими Англия у себя пользовалась монопольно из своих колоний, лаковое производство сделалось общедоступным; однако, возникновение масляно-лаковых заводов началось лишь с начала 60-х г. XIX века, то есть совпадает с обнародованием исследований французского химика Виолета о лаках в 1862 г.
В России начало производства масляных экипажных лаков совпало с развитием сети железных дорог. Первым русским заводом высоких сортов масляных лаков явился завод фирмы И. С. Оссовецкого и Ко, основанный в 1874 г. в Москве
Компоненты
Существует множество различных смол, идущих для производства лаков; они отличаются друг от друга по своим свойствам, в зависимости от которых находятся и достоинства получаемых лаков. Почти все смолы растворяются в растительных маслах и лишь немногие в эфирных маслах и спиртах. Смолы, отличающиеся особенной твёрдостью и тугоплавкостью, называются копалами. Из жидкостей в качестве растворителей в лаковом производстве наиболее употребительны: обыкновенный спирт, различные сорта скипидара ильняное масло. По этим растворителям лаки подразделяются на три главные группы: лаки спиртовые, скипидарные и масляные. Каждая из названных групп имеет свой подбор смол, отличается своими характерными свойствами и предназначением; производство лаков каждой группы требует особых приёмов и приспособлений.

Шампунь
Шампунь — одно из главных и самых распространенных средств по уходу за волосами. Слово является опосредованным англоязычным заимствованием из хинди, как «чампa» — название цветка растущего в Индии, из которого делается масло для втирания в волосы (отсюда англ. shampoo — «массировать»).
Шампунь представляет собой смесь нескольких веществ. Компонент, содержащийся в наибольшем количестве, — вода, затем следуют поверхностно-активные вещества (ПАВ). Также используются в составе консерванты, ароматизаторы, неорганические соли — хлорид натрия или другие, для поддержания желаемой вязкости. В состав современных шампуней часто входят природные масла, витамины или другие компоненты, которые, по утверждению производителей, способствуют укреплению волос или представляют какую-либо пользу для потребителей. Тем не менее, экспериментальных подтверждений этому не существует.
Непосредственно после использования шампуня многие наносят кондиционер для волос или бальзам-ополаскиватель. Считается, что эффективный уход за волосами предполагает использование шампуня и бальзама-ополаскивателя или кондиционера одного производителя, одной марки. У большинства крупных компаний существует целая продуктовая линейка: шампунь, бальзам/кондиционер, маска для волос, мусс для волос, воск, лак для волос.
История
Шампунь был изобретен в 1903 году. Немецкий химик Ханс Шварцкопф впервые изготовил фиалковый шампунь с логотипом в виде черноволосой головы. Порошковый шампунь Шварцкопфа стал первым марочным продуктом в области косметики для волос. Ассортимент шампуней расширился достаточно быстро и насчитывал уже восемь видов: желтковый, ромашковый, кислородный, травяной, ланолиновый, березовый, серный и с вытяжками смол. В 1919 году производство вышло на качественно новый уровень, а продукт получил название Schaumpoon. Через несколько лет компания Шварцкопфа представила новое изобретение — жидкий шампунь. В 1931 году был создан шампунь с ухаживающими компонентами, в 1993 году — первый бесщелочной шампунь для волос, формула которого стала основой многих современных шампуней. Производство шампуней и других средств, ухаживающих за волосами, постоянно расширяется. В настоящее время существует множество шампуней, бальзамов-ополаскивателей, масок для различных типов волос. Также в производство внедрены шампуни-тоники, обеспечивающие волосам временное окрашивание, не нарушающее структуру волоса.
Возможные компоненты шампуня
- Вода как основа, в которой смешиваются остальные компоненты составляет около 80 % всех компонентов.
- Детергенты — поверхностно-активные вещества, которые активно удаляют загрязнения. Лаурилсульфат аммония (Ammonium Lauryl Sulfate)/ лауретсульфат аммония (Ammonium Laureth Sulfate)/ Лаурилсульфат натрия (Sodium Lauryl Sulfate);
- Моющие средства (детергенты) среднего пенообразования, которые добавляются для образования мыльной пены — кокамид DEA, MEA, или TEA (Cocamide DEA, MEA, or TEA)/Кокамидопропил бетаин (Cocamidopropyl Betaine). Кроме того, эти компоненты увлажняют и сгущают формулу шампуня для того, чтобы он легче распределялся. Варианты — дециловый глюкозид, кокамидопропил бетан, глицерет кокоат, кокоамфодиацетат.
- Цитрат натрия, или натриевая соль лимонной кислоты (Sodium Citrate). Это буферный агент, который держит на необходимом уровне pH шампуня (слабокислая среда) во время мытья волос. Цитрат натрия позволяет удалять с волос грязь и жир, а также помогает выравнивать кутикулы волос (чешуйки на каждом волосе), чтобы волосы выглядели гладкими и блестящими.
- Гликоль дистеарат (Glycol Distearate) / Стеарат (Stearate). Эти вещества являются восками и добавляются в шампунь для улучшения внешнего вида и консистенции массы: они дают массе шампуня жемчужный блеск и позволяют шампуню легко вытекать из бутылки.
- Поликватерниум (Polyquaternium) / Кватерниум (Quaternium). Это смягчающие компоненты, которые уплотняют шампунь и кондиционируют волосы.
- Диметикон (Dimethicone) / Циклометикон (Cyclomethicone). Силиконовые масла, которые покрывают и сглаживают кутикулы волоса, утолщая волос, уменьшая статическое электричество и добавляя волосам блеска. Кроме того, они увеличивают вес волос и облегчают их расчесывание. Однако они могут увеличить жирность и даже вызвать зуд кожи головы.
- Пантенол (Panthenol). Форма витамина В, это увлажнитель, который проникает в кутикулу волоса и увеличивает её, а также покрывает сверху для придания блеска.
- Цетиловый (Cetyl) / олеиловый (Oleyl) / стеариловый (Stearyl) спирты. Это гидратированные спирты, которые прикрепляется к внешней стороне ствола волоса и действуют как смазочный материал для легкого расчесывания.
- Различные «ухаживающие» добавки: кератин, протеин, глицин, биотин, витамины и т. п.
Вредные компоненты:
- Диэтаноламин способен вызвать раздражение слизистых оболочек, токсичен для сердечно-сосудистой системы, почек, желудочно-кишечного тракта.
- Фталаты плохо влияют на эндокринную систему человека и на мужскую половую систему.
- Пропиленгликоль может привести к раздражению кожи, повредить печень и почки.
- Триклозан вместе с вредными бактериями уничтожает и полезную микрофлору.

Целлофан
Целлофан (от целлюлоза и греч. φᾱνός — светлый) — прозрачный жиро- влагоустойчивый плёночный материал, получаемый из вискозы.
Иногда целлофановыми неправильно называют упаковочные изделия (пакеты, товарную упаковку) из полиэтилена, полипропилена или полиэфиров. Это разные материалы с совершенно разными свойствами.
История
Целлофан был изобретён Жаком Эдвином Бранденбергером, швейцарским текстильным инженером, между 1908 и 1911 годами. Он намеревался создать влагонепроницаемое покрытие для скатертей, спасающее их от пятен. В ходе экспериментов он покрыл ткань жидкой вискозой, но получившийся в результате материал был слишком жёстким для использования как скатерть. Однако покрытие хорошо отделялось от тканевой основы, и Бранденбергер понял, что ему найдется другое применение. Он сконструировал машину, производившую листы вискозы. В 1913 году во Франции началось промышленное производство целлофана. После некоторых доработок целлофан стал первой в мире относительно устойчивой к воде гибкой упаковкой.
После разработки новых видов полимерных материалов в 1950-е годы роль целлофана существенно снизилась — он был практически полностью вытеснен полиэтиленом, полипропиленом и лавсаном. Однако значительно бо́льшая экологическая безопасность целлофана благодаря высокой скорости его биологического разложения и отсутствию вредных пластификаторов (глицерин физиологически и экологически безвреден) способствует возрождению интереса к этому упаковочному материалу.
Применение
Целлофан в настоящее время изредка используется как упаковочный материал в виде внешней прозрачной плёнки, а также для упаковки дорогих сортов пищевых, кондитерских продуктов, для изготовления оболочки для колбас и сыров, мясо-молочных изделий. При этом сегодня в этой сфере в основном используются БОП-пленки, производимые из полипропилена и визуально имеющие аналогичные свойства. Однако эти пленки не обладают главным полезным качеством целлофана — влагопроницаемостью.

Пластмасса
Пластмассы (пластические массы) или пластики — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.
Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять заданную форму после охлаждения или отвердения. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное (твёрдое) состояние.
История
Первая пластмасса была получена английским металлургом и изобретателем Александром Парксом в 1855 году. Паркс назвал её паркезин (позже получило распространение другое название — целлулоид). Паркезин был впервые представлен на Большой Международной выставке в Лондоне в 1862 году. Развитие пластмасс началось с использования природных пластических материалов (жевательной резинки, шеллака), затем продолжилось с использованием химически модифицированных природных материалов (резина, нитроцеллюлоза,коллаген, галалит) и, наконец, пришло к полностью синтетическим молекулам (бакелит, эпоксидная смола, поливинилхлорид, полиэтилен и другие).
Паркезин являлся торговой маркой первого искусственного пластика и был сделан из целлюлозы, обработанной азотной кислотой и растворителем. Паркезин часто называли искусственной слоновой костью. В 1866 году Паркс создал фирму Parkesine Company для массового производства материала. Однако, в 1868 году компания разорилась из-за плохого качества продукции, так как Паркс пытался сократить расходы на производство. Преемником паркезина стал ксилонит (другое название того же материала), производимый компанией Даниэля Спилла, бывшего сотрудника Паркса, и целлулоид, производимый Джоном Весли Хайатом.
Получение
Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этилен-полиэтилен).

Спички
Спичка - палочка (черенок, соломка) из горючего материала, снабжённая на конце зажигательной головкой, служащая для получения открытого огня.
История
История изобретений и открытий в химии в конце XVIII — начале XIX века, приведшая к изобретению различного типа спичек, достаточно запутана. Международного патентного права тогда ещё не существовало, страны Европы часто оспаривали первенство друг друга во многих проектах, и различные изобретения и открытия появлялись практически одновременно в разных странах. Поэтому имеет смысл говорить только о промышленном (мануфактурном) производстве спичек.
Первые спички сделал в 1805 году французский химик Жан Шансель. Это были деревянные спички, зажигавшиеся при соприкосновении головки из смеси серы, бертолетовой соли и киновари с концентрированной серной кислотой. В 1813 году в Вене была зарегистрирована первая в Австро-Венгрии спичечная мануфактура Малиарда и Вика по производству химических спичек. Ко времени начала производства серников (серных спичек) (1826) английским химиком и аптекарем Джоном Уокером (англ. John Walker) химические спички были уже достаточно широко распространены в Европе.
Головки в спичках Джона Уокера состояли из смеси сульфида сурьмы, бертолетовой соли и гуммиарабика (камеди — вязкой жидкости, выделяемой акацией). При трении такой спички о наждачную бумагу (тёрку) или другую достаточно шершавую поверхность её головка легко зажигается.
Спички Уокера были длиной в целый ярд. Они упаковывались в оловянные пеналы по 100 штук, однако больших денег на своём изобретении Уокер не заработал. К тому же эти спички имели ужасный запах. Позже начали поступать в продажу спички меньшей величины.
В 1830 году 19-летний французский химик Шарль Сориа изобрёл фосфорные спички, состоявшие из смеси бертолетовой соли, белого фосфора и клея. Эти спички были весьма огнеопасны, поскольку загорались даже от взаимного трения в коробке и при трении о любую твёрдую поверхность, например, подошву сапога. В то время ходил английский анекдот, в котором целая спичка говорит другой, полуобгоревшей: «Видишь, чем кончается твоя скверная привычка чесать затылок!» Спички Сориа не имели запаха, однако были вредны для здоровья, поскольку белый фосфор очень ядовит, чем пользовались многие самоубийцы для сведения счётов с жизнью.
Основным недостатком спичек Уокера и Сориа была нестабильность зажигания черенка спички — время горения головки было очень мало. Выход нашёлся в изобретении фосфорно-серных спичек, головка которых изготавливалась в два этапа — сначала черенок обмакивался в смесь серы, воска или стеарина, небольшого количества бертолетовой соли и клея, а затем в смесь белого фосфора, бертолетовой соли и клея. Вспышка фосфора зажигала более медленно горящую смесь серы и воска, от которой зажигался черенок спички.
Эти спички оставались опасными не только в производстве, но и в использовании — погашенные черенки спичек продолжали тлеть, приводя к частым пожарам. Эту проблему удалось решить, пропитав черенок спички фосфорнокислым аммонием (NH4H2PO4). Такие спички стали называться импрегнированными (англ. impregnated — пропитанные) или, позже, безопасными. Для стабильного горения черенка его начали пропитывать воском или стеарином (позднее — парафином).
В 1855 году шведский химик Йохан Лундстрем нанёс красный фосфор на поверхность наждачной бумаги и заменил им же белый фосфор в составе головки спички. Такие спички уже не приносили вреда здоровью, легко зажигались о заранее приготовленную поверхность и практически не самовоспламенялись. Йохан Лундстрем патентует первую «шведскую спичку», дошедшую до наших дней почти без изменений. В 1855 году спички Лундстрема были удостоены медали на Всемирной выставке в Париже. Позднее фосфор был полностью выведен из состава головок спичек и оставался только в составе намазки (тёрки).
С развитием производства «шведских» спичек, производство спичек с использованием белого фосфора было запрещено почти во всех странах. До изобретения сесквисульфидных спичек ограниченное производство спичек с белым фосфором сохранялось только в Англии, Канаде и США, в основном для армейских целей, а также (до 1925 года) — в некоторых странах Азии. В 1906 году была принята международная Бернская конвенция, запрещающая использование белого фосфора при производстве спичек. К 1910 году производство фосфорных спичек в Европе и Америке было полностью прекращено.
Сесквисульфидные спички были изобретены в 1898 году французскими химиками Савеном и Каеном. Они производятся в основном в англоязычных странах, главным образом для армейских нужд. Основой довольно сложной композиции головки являются неядовитый сесквисульфид фосфора (P4S3) и бертолетова соль.
В конце XIX века спичечный бизнес превратился в шведский «национальный вид спорта». В 1876 году было построено 38 заводов по производству спичек, а в общей сложности работал 121 завод. Однако к началу XX века почти все они либо разорились, либо слились в большие концерны.
В настоящее время спички, изготавливаемые в большинстве европейских стран, не содержат соединений серы и хлора — вместо них используются парафины и бесхлорные окислители.
Применение
Помимо основного назначения, спички иногда используются:
- Как условная денежная единица при различных карточных и других играх.
- Для изготовления спичечных домиков.
- Спичечный коробок советского/российского образца по ГОСТу имеет длину ровно 50 мм, что позволяет с его помощью измерять размеры предметов.

Зубная паста
Зубная паста — желеобразная масса (паста или гель) для чистки зубов. Ранее приготавливалась на основе мела, современные зубные пасты, в основном, основаны на силикатах.
История
Раньше в качестве абразива в пастах использовался карбонат кальция, но от него постепенно отказались, так как он не является химически инертным и вступает в реакцию с другими компонентами пасты. К тому же кристаллическая структура карбоната кальция близка к игольчатой, а значит, травматична для эмали зубов. Сейчас его заменили слабые абразивные реагенты — соединения кремния (аэросил, алюмосиликат, диоксид кремния, гидроксид кремния, дикальций фосфат).
За вспенивание пасты отвечают поверхностно-активные вещества (ПАВ). Наиболее распространены — лаурилсульфат натрия, лаурилсаркозинат натрия, бетаины. Введение ПАВ позволяет свести микроповреждения зубной эмали при чистке зубов к минимуму. К тому же, согласно многочисленным социологическим исследованиям, большинство людей являются приверженцами высокопенящихся зубных паст.
Для образования однородной консистенции применяют связующие вещества — препараты агара, пектин, декстран, глицерин, альгинат натрия, натрий карбоксиметилцеллюлоза.
Активными компонентами зубных паст являются вещества, которые обладают лечебно-профилактическим действием — лактат алюминия, фториды, соединения с антимикробной активностью, отдельные микро-, макроэлементы и полиминеральные комплексы, экстракты лекарственных трав, ферменты, прополис и др. В последнее время активно разрабатываются пасты на основе сорбентов (полидиметилсилоксана, гидрогеля метилкремниевой кислоты). Использование в зубных пастах энтеросгеля позволяет получить не только мягкое абразивное действие, но и выраженное сорбционное по отношению к микроорганизмам действие и эмалепротекторный эффект. Кроме того, пасты сорбционного действия обладают способностью сорбировать запахи, образующиеся в результате жизнедеятельности микроорганизмов (галитоз).
В качестве ароматизаторов выступают как натуральные, так и идентичные натуральным соединения. Из натуральных наиболее часто используют ароматные компоненты эфирных масел (терпеноиды) — ментол, тимол, корвакрол, лимонен, сквалены и др. Использование синтетических ароматизаторов позволяет снизить себестоимость конечного продукта.
Состав
Раньше в качестве абразива в пастах использовался карбонат кальция, но от него постепенно отказались, так как он не является химически инертным и вступает в реакцию с другими компонентами пасты. К тому же кристаллическая структура карбоната кальция близка к игольчатой, а значит, травматична для эмали зубов. Сейчас его заменили слабые абразивные реагенты — соединения кремния (аэросил, алюмосиликат, диоксид кремния, гидроксид кремния, дикальций фосфат).
За вспенивание пасты отвечают поверхностно-активные вещества (ПАВ). Наиболее распространены — лаурилсульфат натрия, лаурилсаркозинат натрия, бетаины. Введение ПАВ позволяет свести микроповреждения зубной эмали при чистке зубов к минимуму. К тому же, согласно многочисленным социологическим исследованиям, большинство людей являются приверженцами высокопенящихся зубных паст.
Для образования однородной консистенции применяют связующие вещества — препараты агара, пектин, декстран, глицерин, альгинат натрия, натрий карбоксиметилцеллюлоза.
Активными компонентами зубных паст являются вещества, которые обладают лечебно-профилактическим действием — лактат алюминия, фториды, соединения с антимикробной активностью, отдельные микро-, макроэлементы и полиминеральные комплексы, экстракты лекарственных трав, ферменты, прополис и др. В последнее время активно разрабатываются пасты на основе сорбентов (полидиметилсилоксана, гидрогеля метилкремниевой кислоты). Использование в зубных пастах энтеросгеля позволяет получить не только мягкое абразивное действие, но и выраженное сорбционное по отношению к микроорганизмам действие и эмалепротекторный эффект. Кроме того, пасты сорбционного действия обладают способностью сорбировать запахи, образующиеся в результате жизнедеятельности микроорганизмов (галитоз).
В качестве ароматизаторов выступают как натуральные, так и идентичные натуральным соединения. Из натуральных наиболее часто используют ароматные компоненты эфирных масел (терпеноиды) — ментол, тимол, корвакрол, лимонен, сквалены и др. Использование синтетических ароматизаторов позволяет снизить себестоимость конечного продукта.